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Abstract

Bacteriophages (phages) are virtually ubiquitous and play a fundamental role
in the ecological and evolutionary dynamics of their bacterial hosts. While
phages are found across many thermal environments, they can be highly
sensitive to changes in temperature. Moreover, phages are expected to face
increasingly frequent and intense thermal perturbations with global climate
change. In this review, we combine theoretical and empirical evidence to as-
sess the impact of the thermal environment on phage biology at the global
scale. We identify key thermal environments that phages inhabit, and we
discuss the role of temperature in determining phage life-history strategies,
ecological interactions, and evolutionary dynamics. We then explore the po-
tential effects of thermal variation on phage functions in natural microbial
communities and the application of phages as biomedical therapeutics.

497


mailto:greenrodsam@gmail.com
mailto:kayla.king@ubc.ca
https://doi.org/10.1146/annurev-micro-042424-040029
https://doi.org/10.1146/annurev-micro-042424-040029
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.annualreviews.org/doi/full/10.1146/annurev-micro-042424-040029

Horizontal gene
transfer: the transfer
of genetic material
between bacterial cells
that are not parent and
offspring
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INTRODUCTION

Bacteriophages (phages), which are viruses that infect bacteria, are the most abundant biological
entity on the planet (reviewed in 160 and 181). Phages can be found in nearly all habitats per-
missive to life, and their abundance and diversity typically track those of their bacterial hosts. A
primary impact of phages in microbial communities occurs through their lysis (killing) of bacterial
cells. Phage lysis significantly affects the abundance of bacterial genotypes and species and, thus,
microbial community composition and structure. Importantly, phages disproportionately target
the most abundant bacterial taxa and genotypes, and this targeting leads to negative, frequency-
dependent selection (114). These antagonistic interactions can be reciprocal and can drive rapid
coevolution (95).

In natural populations, phages are often exposed to extremes of salinity, pH, and temperature
(reviewed in 84). Temperature is a particularly important environmental factor that affects pro-
cesses at all biological levels, from enzyme kinetics (134) to ecological and evolutionary dynamics
(12, 64, 94). Phages are highly vulnerable to temperature because of their dependence on the ac-
tivity of replicative and lytic enzymes and on the growth rates of their bacterial hosts (123). Given
that phages also rapidly deplete their host populations and so exist predominantly in the environ-
ment as noninfecting particles (178), phages are susceptible to thermal or UV degradation (24,
182). Temperature changes can drive shifts in phage persistence (16) and growth rates (43).

By altering the mode of phage behavior upon infection, environmental temperatures determine
whether phages act as bacterial parasites or as mutualists. Lytic phages replicate immediately, and
then they kill their bacterial hosts upon infection; conversely, some phages follow a lysogenic
life cycle, and they integrate their genetic material into the bacterial chromosome and repli-
cate in synchrony without inducing cell death (78). Integrative (also known as temperate) phage
transmission among cells can facilitate bacterial horizontal gene transfer (165) through the car-
riage of genes involved in bacterial symbiotic mutualism (126) as well as in pathogen virulence,
metabolism, and competitiveness (reviewed in 162). Finally, phages can follow pseudolysogenic
life cycles, in which they exist in a dormant, nonintegrative state postinfection (146). The three
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phage life-cycle strategies are not mutually exclusive; many phages can swap between lytic and
lysogenic/pseudolysogenic life cycles in response to changes in temperature (127, 185).

Phages have been identified across many environments that have unique thermal distributions
(Figure 1 and Table 1; see also Supplemental Text 1 for a detailed overview and Supplemental
Data and Code for data analysis). Phage habitats include extreme thermal environments such as
polar ice and Antarctic soils in which temperatures regularly fall below 0°C (75). Phage habitats
also include hydrothermal vents and hot springs in which temperatures often rise above 100°C
(35). In hot deserts, phages can experience high diurnal fluctuations between extreme hot and
cold temperatures (189). In between thermal extremes is a continuum of intermediate thermal
environments more permissive to life. These intermediate environments include lower temper-
ature habitats such as soils and oceans; increasingly warm habitats such as ectotherm or plant
hosts, whose thermoregulation depends on external sources; and endotherm animal hosts, who
can regulate their body temperatures internally (11, 111, 160, 180). By comparing environments
across the thermal continuum, we can determine the breadth of thermal effects in phage systems.

In this review, we assess how thermal variation within and between phage thermal environ-
ments affects bacteria-phage interactions at the global level. First, we provide a mechanistic
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Examples of phage thermal environments spanning a thermal gradient. (#) Extreme cold phage
environments such as polar ice or Antarctic soil span a range of subzero temperatures (9). () Ocean phages
(160) inhabit a more temperate environment, although temperatures are bimodal, with prevalence peaks at
0°C and 30°C. Global sea surface temperature data for the year 2023 were obtained from Reference 124.

(¢) Soil phages (180) have similar general thermal ranges to those of ocean phages, with temperatures largely
occurring at or above 0°C. Thermal data were obtained from Reference 101. (d) Desert phages (189)
experience the highest daily thermal variation, with diurnal temperatures ranging from those of high heat to
those of low cold (194). (¢) Phages associated with ectotherms (167) experience higher temperatures and less
thermal variation than do free-living phages; the latter difference is due to behavioral thermoregulation.

(f) Endotherms also carry phages (111) and have higher but more stable body temperatures than do
ectotherms. Endotherm body temperatures are bimodal within a small range because of diel and nocturnal
lifestyle differences. Ectotherm and endotherm body temperature data were obtained from Reference 120.
(g) Phages have been found in hydrothermal vents and hot springs (35), which often have temperatures
above 90°C (198). The blue-to-red bar shows the thermal gradient. Environmental temperatures for soil,
oceans, ectotherms, and endotherms are presented as smoothed density plots. Plots were generated using R
(143) and RStudio (149) (see Supplemental Data and Code). The vertical lines within the plots show
median values. The thermal ranges that are shown for extreme cold and desert environments reflect values
reported in the literature. The dashed arrows show expected thermal environment changes with climate
change such as polar ice melting, soil desertification, and ectotherm vector range expansion (82). The block
arrow between ectotherms and endotherms highlights potential ectotherm-endotherm phage transmission
(3). The dotted arrow shows the thermal shift of marine phages deployed as therapeutics (81). Supplemental
Text 1 provides a detailed overview of phage thermal environments. Figure adapted from images created in
BioRender; MacLean C. 2025. https://BioRender.com/s5dfzfd.

analysis of thermal effects on phage life-history traits and trade-offs. We then discuss the po-
tential implications of thermal change for phage ecology and evolution. Finally, we provide an
overview of how thermal environments affect phages in natural communities. Thermal effects are
discussed in the context of global climate change, animal and plant microbiomes, and a topic of
growing interest—the use of phages as antibacterial therapeutics.

TEMPERATURE AND PHAGE INFECTION
Phage Infectivity on Bacteria

Phage thermal sensitivity is illustrated by the observed temperature dependence of the sequential
phage infection steps that are essential for replication (reviewed in 32): phage adsorption to the

Table 1 Estimated thermal profiles of phage environments

Thermal Upper and lower Median Phage Temperature
environment Thermal range (°C) quartiles (°C) temperature (°C) reference reference
Antarctic soil ND ND ~=24.9 18 116
Glacial ice —50to0 —9 ND ND 195 141
Soil —36.3 t0 39.9 1.00 to 15.5 8.04 180 101
Ocean —1.85t035.0 7.76 t0 26.8 19.7 160 124
Ectotherm 6 t040.8 254 t034.5 30.7 100 120
Endotherm 30.2 to 44.6 36.5 to 41.5 384 111 120
Desert —10 to 60 ND ND 140 194
Hot spring 10 (or 36.7)" to 108 28.7t0 55.0 ~40 28 161
Hydrothermal vent 2 to 400 ND ND 35 198

Abbreviation: ND, not determined.

*There is not unanimous agreement on the defined temperature range of hot springs (132).
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Figure 2

Phage life-history traits, with those that contribute to phage fitness labeled with letters. () Phage stability is
a combination of the phage’s intrinsic and extrinsic death rates (i.e., particle decay). (5) Phage adsorption
reflects the rate of attachment to bacterial cells. (¢) The lytic and lysogenic life cycles refer to the ability of
phages to either start replicating immediately upon infection or integrate into the bacterial chromosome.
The pseudolysogenic life cycle refers to the ability of phages to adopt a dormant, nonintegrative state
postinfection. (d) Burst size is the number of phage progeny (particles) released from a single cellular
infection. (¢) Latent period is the time that passes from the point of infection to the point of cellular lysis.
Burst size and latent period are coupled, as short latent periods restrict the time available to produce phage
progeny. (f) Host range represents the diversity and number of bacterial hosts that the phage can infect.
Finally, antiphage defense is the ability of the bacterial host to resist phage infections. While antiphage
defense is a bacterial trait rather than a phage trait, it was included because of its importance in the success of
phage infection. The labels correspond to those in Table 2. Figure adapted from images created in
BioRender; MacLean C. 2025. https://BioRender.com/swjx07z.

bacterial cell, injection of phage genetic material, production of new phage particles (lytic life
cycle) or integration of genetic material (lysogeny), and release of phage progeny through lytic
enzyme activity. Phage infection steps can be grouped into life-history traits that contribute to
phage fitness (Figure 2). Phage life-history traits include particle stability, adsorption rate, life-
cycle preference (lytic versus lysogenic), burst size (number of phage progeny per infected cell),
latent period (time from infection to cell lysis), and host range. Temperature can affect each of
these traits independently (Table 2) and can help shape phage life-history strategies across thermal
environments.

Particle stability. Reviews that explore phages and temperature have primarily focused on
phage inactivation through thermal effects on phage stability (15, 84, 119), likely because phage
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persistence in the environment is crucial for population survival during periods when bacterial
densities are limiting. Additionally, there is growing interest in the use of phages as biocontrols
and therapeutics, which must remain stable during storage and which may be used for products
that will experience thermal extremes, such as foods undergoing pasteurization (6, 112).

Phage thermal stability is largely determined by the physical capsid structure of free phage par-
ticles. For example, as shown by Bull etal. (31), the evolution of phage thermal tolerance can occur
through mutations in genes involved in capsid formation, likely because thermal destabilization
of phage proteins may disrupt their folding and assembly into phage particles. High temperatures
can also select for mutations in structural genes (41, 76) or in their promoters (29). These results
are supported by findings that the genomes of natural phages isolated from hot springs exhibit
preferences for GNA (glycine-N-alanine) sequences that promote the formation of thermostable
disulfide bridges (113). In some phages, thermal decay is determined by the stability of capsid-tail
connector proteins that degrade at high temperatures; this degradation results in DNA expulsion
(6, 171). Phage stability can be enhanced by the presence of “decoration” proteins that stabilize
phage capsids and support particle assembly (45).

Adsorption. The first stage of phage infection involves adsorption to the bacterial cell (reviewed
in 14). Briefly, phages collide initially with bacterial cells through Brownian motion and then
bind reversibly to common cell surface components. Through periodic adsorption and desorption,
phages conduct a “random walk” across the bacterial surface until they find preferred receptors.
Once target receptors are identified, phages bind irreversibly before injecting their genetic mate-
rial into the cell. Bacterial surface receptors targeted by phages are diverse and often have roles in
bacterial metabolism (14).

Rising temperatures reduce phage adsorption efficiencies (154, 163, 164). However, the mech-
anisms behind reduced adsorption can vary. Thermal increases may alter the ability of phages
to bind to their target receptor—for example, because of reduced phage binding affinities (40,
138, 151). Consistent with this possibility, thermal adaptation in some phages has been linked to
mutations in tail fiber genes that support phage attachment to bacterial surface receptors (39).
Theoretically, reduced binding may also reflect changes in the conformation of bacterial struc-
tures that are used as surface receptors, although studies demonstrating this hypothesis are lacking.
Alternatively, warming may alter the expression of bacterial surface receptors (102) and so change
the availability of attachment areas. Receptor access may be further affected by biofilm produc-
tion (170), which can increase (22, 23, 30) or decrease (46) in response to temperature. Notably,
the adsorption of some phage taxa appears to be resilient to warming, and so thermal effects may
be taxon dependent (21, 67, 164). Whether such effects are primarily driven by changes in phage
binding ability or bacterial susceptibility to phage attachment is unclear.

Infection and genome stability. While phages may be able to attach to hosts at high tempera-
tures, the injection of phage genetic material into the target bacterium can depend on temperature.
For instance, during injection, phage X DNA undergoes a density transition that facilitates suc-
cessful infection at 37°C, and this process can be hindered at higher or lower temperatures (169).
Similarly, under elevated temperatures, phage QB rapidly evolves mutations in a protein involved
in DNA transfer; this finding suggests strong temperature dependence of genome injection (77,
98). For the successful establishment of infections, phages must be able to both adsorb to bacterial
cells and transfer their genetic material at different temperatures.

Theoretically, injection and persistence of phage genetic material inside the bacterial cell
may depend on the phage genome type: DNA versus RNA and double-stranded (ds) versus
single-stranded (ss) molecules. For example, dsRNA is considered more thermostable than is
dsDNA (85), and so dsRNA phage genomes are expected to be at lower risk of thermal decay than
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are dsDNA phage genomes. Similarly, dsDNA is thought to be more thermostable than is ssDNA
(130); correspondingly, ssDNA and potentially ssRNA phage genomes may be at higher risk of
thermal decay. Notably, RNA and ssDNA phages have higher mutation rates than do dsDNA
phages (52). Rising temperatures may increase RNA or dsDNA phage prevalence if genome
stability is under selection. However, if thermal change selects for different phage traits, RNA or
ssDNA phages may become more prevalent given their greater access to mutational diversity.

Life-cycle strategy. Phage life-cycle strategies (lytic, lysogenic, or pseudolysogenic; see Figure 2)
are not mutually exclusive, and phages can move among them depending on environmental condi-
tions (127, 185). While phages following a lysogenic life cycle are often under selection to preserve
and even to protect host cells (25), high temperatures can induce integrated phages into a lytic life
cycle through the threat of cell death (103, 108). Temperature modulates lysis and lysogeny deci-
sions during phage infections, with higher temperatures generally encouraging phages to follow
a lytic life cycle (117, 155, 185). Phage preference for lysis at high temperatures may follow the
same mechanism as lytic induction, with phages attempting to “jump ship” before the death of
their hosts.

Lysis and lysogeny decisions are also affected by temperature-mediated changes in bacterial
growth rates and population densities (136). At high temperatures, bacterial growth rates are high,
and so an abundance of bacterial hosts are available for phage infection (145). High host densities
select for virulent, lytic phages, which rapidly replicate through host killing (2). In contrast, poor
bacterial growth at low temperatures selects for low phage virulence through long latent periods
or lysogeny, in which phages replicate in tandem with their hosts (2). Phage life-cycle decisions
vary in response to host densities; phages following lysogenic life cycles often possess quorum-
sensing systems that allow them to become induced into a lytic life cycle when susceptible bacterial
host densities increase (5). Supplemental Text 2 presents a detailed analysis of phage virulence
and life-cycle preferences across phage thermal environments.

Latent period and burst size. Following successful adsorption and DNA injection, the phage
lytic life cycle involves the production of phage particles, the replication and packaging of phage
genetic material, and lysis of the bacterial cell. The success of these steps can be exemplified by
two correlated, temperature-dependent phage traits: latent period and burst size. The latent period
represents the time from cell infection to cell lysis and is determined by the expression and activity
of lytic enzymes (187). The burst size represents the number of viral particles produced from a
single infection cycle and is determined by the replicative period length (latent period) and the
reaction rates of phage replication proteins (86). Given that more rapid cell lysis shortens the time
available to replicate, a longer latent period allows for a larger burst size.

Theory suggests that, by altering lytic enzyme activity, thermal change will either increase
or reduce latent periods and burst sizes. High temperatures have indeed been found to shorten
latent periods and reduce burst sizes; these findings indicate higher Iytic enzyme activity (118).
Warming temperatures can also reduce latent periods and burst sizes through host density effects
that increase bacterial growth rates and densities (136). High host densities select for phages with
shorter latent periods (2), as the benefit of ongoing transmission outweighs the cost of a smaller
burst size.

Some studies have found that thermal change disrupts the coupling between latent period and
burst size, with higher temperatures generally shortening the latent period but increasing the
burst size (121, 123, 190). One explanation for this decoupling is that lytic enzymes and replica-
tive/packaging proteins may have different responses to temperature. If replicative proteins have
steeper thermal performance curves than do lytic enzymes, rising temperatures may cause phage
particle production rates to rise more rapidly than do lysis rates. Given that latent period and burst
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size determine phage virulence and transmission potential (2), further investigation of the tripar-
tite relationship among temperature, burst size, and latent period is needed to better understand
how phage fitness varies in natural environments.

Host range. Changes in phage host ranges across temperatures can alter phage population dy-
namics and competition outcomes (96). In microbial communities, phages are often surrounded
by diverse bacteria, including many they are unable to infect. The presence of unavailable hosts
creates a strong selection pressure for host range expansion as phage host range generalists have
higher host encounter rates (152). Accordingly, some phages have broad host ranges and can infect
multiple unrelated bacterial species (33). Yet broad host ranges come with fitness trade-offs (139),
and so most phages have species- or even strain-specific associations with bacterial hosts (135).
By expanding or narrowing phage host ranges, temperature change could either increase bacterial
host availability or reduce phage competitive fitness.

Phage host range expansion typically occurs through mutations in tail fiber genes, which are
responsible for phage adsorption to the bacterial cell surface (152, 186). Interestingly, tail fiber
mutations are also frequent targets when phages adapt to thermal stress (39); this observation raises
the possibility that thermal adaptation may have pleiotropic effects on host range. For example,
Chen et al. (34) found that tail fiber mutations that widen phage thermal tolerance ranges also
expand phage host range. Yehl et al. (186) provided further details and found that changes in phage
host range and thermal tolerance range depend on thermally adaptive mutations occurring in the
“host range—determining region” of the tail fiber gene. However, thermal adaptation in other
traits, such as phage particle stability, can restrict phage host range evolvability (159). Different
modes of thermal adaptation may exert opposing pressures on phage host range.

High host diversity selects for phage host range expansion (152). Given that bacterial diversity
often increases with temperature (197), co-selection for host range expansion and thermal toler-
ance may be frequent under warming conditions. Selection for host range shifts is exacerbated by
temperature-mediated changes in bacterial community composition (59). While overall species
richness may increase with warming, some bacterial taxa may be excluded, with this exclusion
forcing phages to change their focal host to avoid extinction.

Life-history trade-offs. Life-history theory posits that life-history traits must have fitness trade-
offs to explain the absence of Darwinian demons, which are hypothetical organisms capable of
achieving maximal fitness for all traits (99). Such trade-offs are frequently found in phage systems
(58,60,91,129), and some have been shown to be temperature dependent (65). For example, rising
temperatures can reduce phage stability but increase replication rates, thereby modulating phage
population dynamics (47). Similarly, selection for increased phage thermal stability can lead to a
reduction in replication rates (48). Thermal trade-offs and trade-ups have also been found among
phage stability and adsorption rate, latent period, and burst size (87, 88). The evolution of trade-
offs is restricted by thermal variation; fluctuating temperatures that alternately select for thermal
stability and replication rate can remove the stability-replication trade-off (115).

Bacterial Resistance to Phages

Virulent phage infections create a strong selection pressure for the evolution of phage resistance in
bacterial hosts, although the mechanisms and costs of phage resistance vary across temperatures.
In single-species experiments, phage resistance typically arises through mutations in surface re-
ceptors (17, 183). These mutations prevent phages from adsorbing to the bacterial membrane but
generally come with high fitness costs through pleiotropic effects on growth rates, virulence, and
antibiotic susceptibility (110). Padfield et al. (128) showed that the costs of receptor mutation—
based phage resistance on bacterial growth rates were highest at the bacterial thermal optimum.
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These findings likely reflect the fact that mutated receptors generally have functions in bacte-
rial metabolism (14); receptor mutations restrict growth at the thermal optimum by reducing
metabolic rates.

Resistance can alternatively arise through the evolution or horizontal acquisition of phage de-
fense systems (51, 166), which also have temperature-dependent costs (4). However, Aframian et al.
(4) found that the costs of certain phage defense systems, in contrast to those of receptor-based
mutations, decrease closer to the bacterial thermal optimum. These findings suggest that phage
defense systems may be preferred at the thermal optimum, while receptor mutations are favored
away from the optimum. The best route for phage resistance may depend on the level of warming
experienced and on phage defense system availability.

The relative benefits of receptor mutations and phage defense systems can be further in-
fluenced by the effects of temperature on bacterial growth rates. At low temperatures, longer
bacterial generation times increase the probability of multiple phage infections within a single
bacterial reproductive cycle. As a result, selection at low temperatures favors phage defense sys-
tems that respond to ongoing infections, such as CRISPR-Cas, over receptor mutations (79).
In addition, temperature can alter the expression of phage defense systems (20), although such
temperature-dependent expression is not universal across all bacterial taxa (173).

MISMATCHES IN BACTERIA-PHAGE THERMAL RESPONSES

The thermal sensitivity of phage life-history traits ultimately leads to temperature dependence in
fitness, typically measured through phage growth rates (128). Changes in fitness with temperature
can be visualized via thermal performance curves consisting of upper and lower thermal limits and
of a thermal optimum in which fitness is highest. Thermal performance curves across biological
systems generally follow the same pattern: Fitness increases gradually with temperature up to a
thermal optimum, after which fitness rapidly decreases (153).

Mismatches in Ecological Time

Hosts and parasites often differ in the shape and positioning of their thermal performance curves
(37). Generally, parasites are thought to have broader thermal tolerance limits than do their hosts;
parasite burden is highest on either side of the host thermal optimum. However, experimen-
tal studies frequently highlight cases in which parasites have narrower thermal limits than do
their hosts (61, 128). Depending on the extent and position of host-parasite thermal performance
mismatches, changes in temperature can either disrupt or exacerbate parasite infections.

Phages are obligate parasites and so tend to have narrower thermal limits than do their bacterial
hosts (Figure 34). In addition, studies generally find that phage thermal optima are either the
same (128) or lower than bacterial thermal optima (93). The mismatch among bacterial and phage
thermal optima and upper thermal limits represents a thermal refuge in which bacteria can grow in
the absence of phage infection (128). Using a panel of 15 G4-like Escherichia coli phages, Knies et al.
(93) found that phages infecting the same bacterial strain exhibit considerable thermal optimum
and tolerance limit variation. As observed in bacteria (50), rising temperatures are expected to
lead to the extinction of thermally sensitive phages and in turn to a decrease in phage diversity.
Reduced phage predation will increase the relative abundance of dominant bacterial genotypes
(114), although resource availability will decrease because of reduced nutrient cycling (179). Phage
predation can be maintained at high temperatures by the presence of thermally tolerant phage
community members (67).

Phages generally follow a “hotter-is-better” thermal strategy whereby higher thermal op-
tima tend to coincide with higher maximum population growth rates (93) (Figure 354). The
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Examples of bacteria and phage thermal performance curves. () Bacteria and phages have thermal
mismatches. Phages generally have lower thermal optima and thermal maxima than do their bacterial hosts
(128). However, thermal responses vary among phages (93). (b) Phages generally follow “hotter-is-better”
and “hotter-is-broader” thermal strategies whereby phages with higher thermal optima tend to have higher
maximum performance and higher upper thermal limits (93). () Phage infection may reduce bacterial upper
thermal limits (CTmax) through the metabolic costs associated with antiphage defense (4, 74). The
two-sided arrow shows the shift in the bacterial upper thermal limit. (d) Phage infection can lead to shifts in
the bacterial thermal optimum (Topt) through higher growth at phage nonpermissive temperatures and
temperature-dependent fitness costs of phage resistance (93). Figure adapted from images created in
BioRender; MacLean C. 2025. https://BioRender.com/r1w4qkz.

“hotter-is-better” strategy stems from the fact that rising temperatures increase reaction rates
and allow for faster growth. The relationship between maximum growth and thermal optima
exacerbates bacteria-phage thermal mismatches as phages adapted to low temperatures will have
lower fitness relative to their bacterial hosts. While a “hotter-is-better” strategy is also observed
in insects (56), a recent meta-analysis found only limited support for the existence of the strategy
across species (109). One reason that evidence from phages may show stronger support for the
strategy could be because phage thermal responses depend on the reaction norms of individual
proteins involved in phage infection and replication (92). More complex organisms may also
be able to maintain high fitness at low temperatures through thermal acclimation, behavioral
modifications, or internal thermoregulation. In addition to “hotter is better,” phages also follow
a “hotter-is-broader” strategy whereby phages with higher thermal optima tend to have broader
thermal tolerance limits (93). A correlation between thermal optimum, thermal tolerance range,
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and maximum fitness contradicts specialist-generalist theory, which states that an increase in
thermal tolerance range should lead to a trade-off with maximum performance (89). However,
the strategy means that cold-adapted phages will rapidly lose activity as temperatures increase,
with this loss leading to phage community shifts and a decrease in phage diversity.

Host-parasite thermal performance mismatches are not fixed. For example, Hector et al. (74)
found that parasite infection can reduce host upper thermal limits through exploitation of host re-
sources and costly activation of immune responses. Additionally, parasites, being smaller than their
hosts, are expected to rapidly acclimate to thermal change, with this rapid acclimation potentially
reducing mismatches (131, 148). In bacteria-phage systems, the activation of phage defense sys-
tems has temperature-dependent fitness costs linked to autoimmunity (4). To what extent phages
are capable of plastic responses to thermal change is unclear. However, one mechanism for phage
acclimation could include temperature-dependent expression of decoration or structural proteins
to stabilize phage particles (29, 192). Through the activation of bacterial immune responses and
phage thermal acclimation, bacterial and phage upper thermal limits may become increasingly
aligned (Figure 3¢). The alignment of bacterial and phage thermal responses will remove the high-
temperature bacterial thermal refuge and could increase the probability of bacterial population
collapses during warming events.

Mismatches in Evolutionary Time

Bacteria-phage thermal mismatches can change over time as thermal performance evolves. Phage
infection has been shown to select for upshifts in bacterial host thermal optima (128, 142). In some
bacteria-phage systems, the evolution of phage resistance results in temperature-dependent fitness
costs, and these costs are highest at the bacterial thermal optimum (128). As bacterial fitness at
the thermal optimum decreases following resistance evolution, relative bacterial fitness above the
thermal optimum increases, creating a new, higher thermal optimum (128). An upshift in bacterial
thermal optima is expected to exacerbate bacteria-phage thermal mismatches as bacteria start to
specialize at high temperatures (Figure 3d).

Phage thermal adaptation can reduce thermal mismatches by aligning both thermal optima
and thermal tolerance limits to those of their bacterial hosts. By reanalyzing the evolved lines from
Holder & Bull (76), Knies et al. (92) showed that the “hotter-is-better” and “hotter-is-broader”
strategies are evolvable; selection for extended upper thermal limits resulted in an increase in
phage thermal optima and maximum performance (Figure 3b). A correlation between phage ther-
mal optima and upper thermal limits may be expected when thermal stress affects proteins directly
involved in phage replication. For example, fitness-reducing phage polymerase mutations have
been shown to simultaneously reduce phage replication at both the thermal optimum and upper
thermal limit (97). The evolvability of phage thermal optima and upper thermal limits means that
thermal adaptation may reduce the size of bacterial thermal refuges. In addition, heat stress that
reduces bacterial growth may still permit phage infections and lead to reduced phage infectious
periods and low bacterial host availability. We might predict that reduced phage virulence will
evolve under extreme warming (2, 73).

The evolution of thermal performance curves depends on thermal variability. Static temper-
atures are expected to select for specialists with narrow thermal ranges, in which performance is
highest at the evolved temperature. In contrast, fluctuating temperatures favor thermal general-
ists with wider thermal tolerance limits but lower maximum fitness (63). Studies in phages suggest
that selection under fluctuating temperatures is primarily driven by the most extreme temperature
(10). However, other studies have found that fluctuations can reduce the strength of selection for
phage high-temperature adaptation (70) and restrict coevolutionary dynamics with bacterial hosts
(53). The lack of consensus among studies on the relationship between fluctuating temperatures
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and thermal adaptation likely reflects the different fluctuation conditions and phages used. While
slow fluctuations facilitate the fixation of thermally adapted genotypes, rapid fluctuations increase
the impact of genetic drift relative to selection and thereby reduce fixation rates and slow adapta-
tion (42). In addition, some phages can rapidly adapt to high temperatures, although the evolution
of other phages is impeded because of inhibited growth (76).

PHAGE COMMUNITIES AND THERMAL SENSITIVITY
Phageome Composition and Dynamics

Phages exist in diverse communities, termed phageomes (reviewed in 36), whose compositions
are expected to change with temperature because of phage-specific thermal responses (93). The-
oretically, a change in temperature should select for phages whose thermal optima most closely
match the new environmental temperature (59, 157). Thermal selection should also favor phages
that can rapidly adapt to thermal change through altered thermal optima or extended thermal tol-
erance limits (76). Consistent with this premise, rising temperatures alter relative phage growth
rates and allow weaker phage competitors to become more dominant (67). Thermal increases also
cause some phage species to decay more rapidly than others and potentially lead to the exclusion
of these phages from the community (6, 67).

Phageome composition is also expected to change with temperature because of thermal sen-
sitivity in the bacterial host community. In bacterial communities, species vary in their thermal
tolerance ranges and thermal optima (59). Accordingly, thermal change generally leads to changes
in bacterial community composition (150, 157), including in animal microbiomes (104). Bacte-
ria and phages have modular interaction networks in which each phage generally targets a small
subset of bacterial community members (135). Changes in bacterial relative abundances—for ex-
ample, through dysbiosis of gut microbiota with warming—are expected to lead to phageome
composition shifts (177). The effects of temperature on phage community composition likely de-
pend on the thermal regime. Static thermal shifts generally reduce genotypic and species diversity
by selecting for a few thermal specialists (59). In both bacterial and phage communities, thermal
fluctuations may promote the maintenance of species and genetic diversity through selection for
a range of thermal optima (193).

Inter-Phage Competition

Phage competition outcomes depend on both relative phage growth rates and the rate of host
population depletion (virulence) (13,69, 71). When host densities are high, phages maximize their
host share by rapidly depleting the host population. Rapid host depletion benefits fast-growing
phages by reducing the availability of hosts for slow-growing competitors. Conversely, when host
densities are low, high-virulence phages rapidly run out of available hosts, and so selection favors
low-virulence phages, which maximize within-host replication and transmission potential (2).

The rate of bacterial clearance by phages is determined by temperature-dependent life-history
traits including adsorption rate, latent period, and burst size. Rapid adsorption and short latent
periods mean host cells are lysed quickly at the cost of a reduced burst size. High temperatures
have been shown to reduce latent periods in some phages (118), with this reduction potentially
making the phages more virulent (2). In addition, phage virulence may increase with temperature
via pleiotropy with thermal adaptation. For example, Kashiwagi et al. (87) found that mutations
arising from thermal selection resulted in more rapid adsorption, reduced latent periods, and ex-
tended burst sizes. Given that thermal adaptation occurs more rapidly in some phages than in
others (76), pleiotropy may allow phages to improve competition outcomes as host availability
rises during warming events.
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The interaction between thermal adaptation and competition is bidirectional. While thermal
adaptation can alter competitiveness, competition has the potential to restrict species’ thermal
adaptation (172). Competition restricts thermal adaptation by reducing population growth rates
and restricting the generation of adaptive mutations (83). Competition can also reduce the time
available for thermal adaptation by promoting the exclusion of thermally maladapted taxa (44).
The presence of competitors is expected to restrict phage thermal adaptation. However, some
studies have suggested that competition can promote thermal adaptation when both selection
pressures are acting in the same direction (109, 176). For instance, in some phage systems, both
competition and high temperatures select for shorter latent periods (2, 87). Synergistic selection
between competition and thermal adaptation may help to stabilize phageomes during thermal
perturbations.

WIDER IMPLICATIONS AND CONCLUDING REMARKS
Climate Change and Phage Thermal Environments

Anthropogenic climate change is a growing threat to global ecology via the alteration of both av-
erage temperatures and thermal variability (82). In an early review of marine viruses and climate
change, Danovaro etal. (43) highlighted that rising temperatures in polar regions generally lead to
an increase in bacterial growth rates and a rise in viral activity. In contrast, temperate ocean heat-
ing leads to a decoupling of bacterial growth and viral activity due to reduced bacterial growth
efficiency. Polar regions are at the greatest risk of warming due to climate change (144). As a result,
microbial communities in polar regions will likely see a rise in phage lytic activity and nutrient
cycling (viral shunt) (156). Conversely, warming in temperate oceans may lead to a decrease in
phage activity. Warming, especially in polar regions, is also expected to lead to changes in pha-
geome composition. In a recent study, Zhong et al. (196) showed that glacial phage communities
from warm and cold climatic periods have unique compositions that possibly reflect community
temperature responses.

In soil environments, climate change is expected to drive desertification through an increase in
soil surface temperatures and a reduction in soil moisture content (27). Desertification reduces soil
carbon and nitrogen levels and leads to reduced bacterial diversity and altered community com-
position (19, 191). As phage diversity largely tracks bacterial diversity (68, 177), desertification is
expected to indirectly reduce phage diversity. Phage abundance and diversity may be further re-
stricted by elevated phage particle decay under dry, thermally variable conditions (66). Supporting
these hypotheses is the observation that hot desert soils tend to have lower phage abundances than
do temperate soils (181).

Finally, the thermal variation experienced by phages that are associated with ectotherm hosts is
expected to increase with climate change. While ectotherms can acclimate in response to thermal
change (148), ectothermic animals generally maintain stable body temperatures through behav-
ioral thermoregulation. Rising temperatures due to climate change are expected to reduce the
efficacy of behavioral thermoregulation by limiting access to thermal refuges (90). Uncontrolled
body temperature increases may contribute to ectotherm microbiome dysbiosis (104) and to the
disruption of phage activity. However, for ectothermic disease vectors such as mosquitoes, rising
temperatures are predicted to increase their reproduction rates and expand their inhabitable ge-
ographic ranges (147). Phages are known constituents of the mosquito microbiome (105) and are
expected to be transferred with the microbiome during feeding (3, 49). With a changing climate,
phages may experience more frequent thermal shifts through transmissions to animal and plant
hosts.
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Phage-Microbiome Interactions Under Rapid Thermal Change

Eukaryotic microbiome diversity and composition are highly sensitive to thermal shifts (104),
which may arise through extreme weather events (e.g., in plants and ectothermic animals) or the
induction of fevers (e.g., in endothermic animals). The impact of temperature on microbiomes is
generally considered with regard to bacterial thermal responses. In a recent review, Huus & Ley
(80) highlighted that commensal bacteria often occupy different thermal niches and that external
thermal stress can directly lead to bacterial microbiome composition shifts. They also suggested
that fevers may provide protective effects by increasing the fitness of bacterial microbiome mem-
bers relative to invading pathogens. Studies to date have generally disregarded the role of the
phageome in modulating bacterial microbiota during thermal change.

Phages often form associations with animals or plants as members of their microbiomes
(11, 111). Phage lytic activity is crucial for maintaining microbiome diversity through negative,
frequency-dependent selection and nutrient cycling (114, 179). Microbial diversification increases
the resilience of microbiomes to environmental perturbations and reduces the impact of thermal
change (107). However, the stabilizing effects of the phageome may be disrupted by tempera-
ture if phages vary in their thermal responses. Thermal upregulation of phages targeting keystone
microbiome members may reduce microbiome stability and remove the microbiome’s protective
effects against pathogens (8, 158). Additionally, diverse phageomes may provide their own protec-
tive effects by actively lysing infecting pathogens. For example, Yang et al. (184) showed that plant
rhizospheres contain pathogen-targeting phages that can protect plants from infections. However,
plant pathogen—targeting phages can be temperature sensitive (173).

Phages also contribute to microbiome resilience by facilitating horizontal gene transfer
through phage lysogeny. Phages often encode genes that contribute to bacterial environmental
stress tolerance (174) and that support the stabilization of bacterial heat shock proteins (133).
While rising temperatures generally support a lytic life cycle (117), temporary heat stress (such
as that caused by fevers or heat waves) may increase the transfer of heat tolerance genes among
bacteria through prophage mobilization (108, 188). An important caveat is that phages also of-
ten carry genes involved in pathogen virulence and antimicrobial resistance (38, 55). While
phages may buffer against microbiome destabilization, heat stress may facilitate the acquisition
of phage-encoded virulence or antimicrobial resistance genes by pathogens (122).

High Temperatures Can Reduce Phage Therapy Efficacy

Because of their lysis of bacterial cells, phages are increasingly being viewed as a potential supple-
ment or alternative to antibiotics in the treatment of animal and plant bacterial infections (137,
175). In the selection of candidates for phage therapies, efforts are made to ensure that phages can
operate at host body temperatures. For example, phages used in human therapies are tested for in
vitro lytic potential at 37°C (resting human body temperature) (168). In contrast, phages targeting
plant pathogens are tested at lower, more physiologically relevant temperatures (57, 175). Phage
candidates that perform well at in situ temperatures may be disrupted by thermal upshifts caused
by fevers (e.g., in endothermic animals) or heat waves (e.g., in plants). Greenrod et al. (67) showed
that thermal increases above 37°C can inactivate phages previously used in human phage therapy
treatments (e.g., 14-1; see 168).

One approach to improving phage performance across a breadth of host temperatures is to pre-
evolve, or “train,” phages with their bacterial targets (26, 54). Phage training at or above in situ
temperatures could expand phage upper thermal limits, improve the position of phage thermal
optima, and increase maximum performance (93). Phage cocktails, which are combinations of
multiple phages, are a potential alternative to phage thermal training (1, 62). Phage cocktails could
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be designed to withstand thermal increases via the use of phages that span a range of thermal
optima and thermal limits. However, thermal increases may inactivate some cocktail members
and lead to weaker suppression and to faster and stronger phage resistance evolution (17, 183).

CONCLUSIONS

Phages are crucial for the maintenance of microbial diversity, the functioning of microbiomes,
and the suppression of bacterial pathogens (137, 160, 199). Thus, large temperature changes shap-
ing phage ecology and evolution could dramatically affect ecosystem stability and the health of
crops, livestock, and humans. Phages can be grouped based on the thermal environments in which
they are found. Phage thermal environments encompass a broad temperature range and include
both relatively stable environments (e.g., polar ice, hydrothermal vents, and endothermic hosts)
and highly variable environments (e.g., deserts, oceans, and soil). To accommodate such ther-
mal breadth, phages often exhibit different life-history strategies that are specific to their thermal
environments.

Experimental studies have shown that phages vary considerably in their thermal responses (67,
93). While such studies highlight that thermal change will alter phage community dynamics, these
studies have a limited ability to predict overall thermal effects in natural phageomes because they
omit the largely unexplored diversity of environmental phage taxa (72). Emerging technologies
such as machine/deep learning could support phage thermal performance predictions and have
recently been used to predict other phage traits such as host range from phage DNA/protein

Figure 4

Examples of changing phage thermal environments. (#) Polar ice melts into ocean water. Photo by Jairo Gallegos, Unsplash.

(b) Mosquito vectors often transmit microbes to endotherms. Photo by David Clode, Unsplash. () Phages isolated from soil or water
can be deployed as therapeutics in animals or plants. Photo from https://commons.wikimedia.org/wiki/File:Phage.jpg

(CC BY-SA 3.0). (d) Desertification of soils leads to increased thermal variability. Photo by Zetong Li, Unsplash. (¢) The animal gut
microbiome can experience thermal change through the induction of fevers or microbial immigration from ingested soil or water. In
the confocal microscopy image, bacteria are red, gut mucus is green, and the gut epithelium is blue. Panel adapted with permission from
Reference 125.
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sequences (106). The combination of these technologies with environmental DNA/RNA se-
quencing may provide an important step toward the determination of thermal effects in phage
communities at a global scale.

Phages are becoming increasingly at risk of thermal perturbations caused by global climate
change (82) or by their movement between thermal environments (81) (Figure 4). While rising
temperatures may lead to increased phage activity in some environments, such as polar oceans
(43), thermal environment transitions through desertification are expected to lead to the loss of
phage diversity and activity (191). Rapid thermal change should also be considered in the con-
text of animal and plant health. The functioning of animal and plant microbiota, the efficacy of
phage therapies, and the success of vector-borne disease control programs all depend on the ability
of phages to withstand thermal variation caused by fevers and heat waves. The impact of cli-
mate warming on ecosystems and human health will fundamentally depend on the ecological and
evolutionary responses of phages and on the effects rippling up levels of biological organization.
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